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Abstract: New azacrom and azathiacrown ethers (Sa-c and 7), incorpc- 

rating two thiourea moieties, were synthesized from the hypervalent 

sulfur-containing tetraazapentalene (1) and diisothiocyanate derivatives 

of oligoethylene glycols and from 1 and 3,6,9-trit hia-l,ll-undecanediieo- 

thiocyanate, respectively, by cyclization and then desulfurization. 

Recently, we have reported that the tetraazapentalene derivative, 

2,3-dimethyl-6,7-dihydro-SH-2a-thia(2a-thia(2a-S~)-2,3,4a,7a-tetraazacyclo~nt 

(cdlindene-1,4(2H,3H)-dithione(l)', reacts with alkyl- and arylisothio- 

cyanates or isocyanates to give new N-alkyl and N-arylsubstituted tetra- 

azapentalene derivatives* b y replacement of the isothiocyanate moiety of 

1 and that the hypervalent sulfur of 1 can be removed by treatment with 

NaBEd and CF3COOH' to give the perhydropyrimidine and perhydropyrimidin- 

2-one derivatives, respectively. More recently, these reactions have 

been applied to the synthesis of rigid macrocycles from 1, p-xylylene- 

diisothiocyanate, and diamines. These findings led us to explore the 

synthesis of flexible macrocycles using 1 as a ring-building block. We 

now report a convenient method for preparing new axacrown and 

azathiacrown ethers (Sa-c and 7) from 1 and diisothiocyanate derivatives 

of oligoethylene glycols (la-c) and from 1 and 3,6,9-trithia-l,ll- 

undecanediisothiocyanate, respectively. 

The typical procedure for the cyclixation reaction is as follows. A 

solution of 3,6,9-trioxa-l,ll-undecanediisothiocyanate6 (2a) (213 mg, 

0.77 mmol) in benzene (30 cm3) was added to a solution of 1 (200 mg, 0.77 
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mmol) in benzene (40 cm3) with stirring at room temperature. The mixture 

was refluxed for 48 h and then evaporated. Chromatography of the residue 

on silica gel with CH2C12-AcOEt (9:l) gave tetraazapentalene crown ether 

(3a) and mnosubstituted tetraazapentalene derivative (4a) together with 

recovery of 1 (Schema 1). The other products were not detected in this 

reaction. Similar treatment of 1 with diisocyanates 2b,c gave 3 b,c and 

4b,c. The structures of 3a-c7 and 4a-c were determined by their IR, lH 

NMR and FAB mass spectra and elemental analyses. The yields of 3a-c 

depended on the number of the -CH2CXH2- unit of 2. 
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scheme 1 
c: n = 5, 44% c: n = 5, 11% 

The ring opening of the tetraaxapentalene skeleton of 3a-c was 

carried out using NaBHI. A typical procedure is as follows. A large 

excess (10 molar equiv.) of NaBH4 was added under argon to a solution of 

3a (100 mg, 0.256 mmol) in DMSO (30 cm3) at room temperature. The mixture 

was stirred for 15 h, poured into aqueous HCl, neutralized with aqueous 

KOH , and then extracted with CHC13. After removal of CHC13 under reduced 

pressure, the residue was chromatographed on silica gel with CH2C12-AcOEt 

(4:l) to give azacrown ether (Sa) in a high yield (Scheme 2). Compounds 

5b,c were obtained in moderate yields under similar conditions. The 

structures of Sa-c were determined by their 'H NMR2 and FAB mass spectra' 

NaBH4 

DMSO a: n = 3, 88% 

b: n = 4, 46% 

5 c: n = 5, 39% 

Scheme2 



and elemental analyses. In the lH NNR spectra of 58-c, the characte- 

ristic singlet signals due to the methylene protons (NCNzN) at 2-position 

appeared at 6= 5.34-5.66. 

This synthetic method was applied to the synthesis of azathiacrown 

ether, When the reaction of 1 with 3,6,9-trithia-l,ll-undecanediisothio- 

cyanate was carried out in benzene at 5oOC for 45 h, tetraasapentalene 

thiacrown ether (6) was isolated in 45% yield. The reaction of 6 with 

NaBHe under the conditions being similar to the cases of Ja-c gave 

azathiacrown ether (7), incorporating two thiourea moieties, in 57% 

yield. The structures of 6' and 78 were established by their spectral 

data and elemental analyses. Further investigations concerning the scope 

of the present reaction are now in progress. 
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Characteristic analytical data: 3a, mp 199-200°C (decomp); III NMR 

(CDC13) 6=2.36 (quint, 2H, NCHZCHZCH~N, J=6.0 HZ), 3.56-3.68 (m, 81i, 2x 
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OCH2CZi20), 3.73 (t, 4H, 2X OCHzCHzN, J=4.6 Hz), 3.98 (t, 4H, 2X 

OCElzCH2N, J-4.6 Hz), 4.40 (t, QH, NCHzCHzCHzN, J-5.8 Hz); Anal. Calcd 

for ClrH22N403S3: C, 43.06; Ii, 5.68; N, 14.35. Found: C, 42.90; Ei, 

5.67; N, 14.36. Jb, mp 154.5-155.5'C (decomp); lH NMR(CDC13) 6=2.37 

(quint, 2H, NCHZCH~CH~N, J=5.8 Hz), 3.62-3.71 (m, 12H, 3x ocH2cH20), 

3.81 (t, 4H, 2X OCHzCHzN, J=4.9 Hz), 3.93 (t, 4H, 2X OCH2CH2N, J=4.9 

Hz), 4.40 (t, 4H, NCHzCHzCHzN, J=6.1 Hz); Anal. Calcd for Cl6H26N404S3: C, 

44.22; H, 6.03; N, 12.89. Found: C, 44.16; A, 6.03; N, 13.02. 3c, mp 
124.5-125.5oC (decomp); 'Ii NMR(CDCla) 8=2.36 (quint, 2H, NCHZCH~CBZN, 

J=6.0 Hz), 3.63-3.70 (m, 16H, 4X OCH2CH20), 3.76 (t, 4A, 2X OCHzCHzN, 

J=5.5 Hz), 3.98 (t, 4H, 2X OCHKHzN, J=5.8 Hz), 4.41 (t, 4H, 

NCHzCHzCHzN, J-5.8 Hz); Anal. Calcd for CisH3oN405S3: C, 45.17; H, 6.32; 

N, 11.70. Found: C, 45.00; H, 6.12; N, 11.65. 6, mp 202-203T 

(decomp); IH NMR(CDC13) 6=2.38 (quint, 2H, NCHzCIIzCHzN, J=6,0 Hz), 2.81- 

2.90 (m, 8H, 2X SCHZCHZS), 2.95 (t, 4H, 2X SCHzCHzN, J=6.7 Hz), 3.96 (t, 

4H, 2X SCHKHzN, J=6.4 Hz‘), 4.41 (t, 48, NCH2CH2CH2N, J=5.8 Hz); Anal. 

Calcd for CllH22N4S6: C, 38.33; A, 5.05; N, 12.77. Found: C, 38.07; H, 

5.07; N, 12.65. All FAB mass spestra were measured by using m- 

nitrobenzyl alcohol (NRA) as a matrix. 3a, m/z 391 (M+H+); 3b, m/z 

435 (M+H+); 3c, m/z 479 (M+H+); 6, m/z 439 (M+H+). 

8. 5a: 'H NMR(CDC13) 6 =1.88 (quint, 2H, NCHzCHKHzN, J=6.0 Hz), 3.60-3.66 

(m, 8H, 2X OCHzCHzO), 3.75 (t, 4H, 2X OCHzCHWEi, J=4.9 Hz), 3.87-3.93 

(m, 4H, 2X OCH~CHZNH), 4.02 (t, 4H, NCHZHZCHZN, J=6.1 Hz), 5.52 (s, 2H, 

NCHzN), 7.03 (brs, 2H, 2x OCH2CH2NH); 5b: lH NMR(CDC13) 6-1.84 

(quint,2H, NCHKHKHzN, J=5.8 Hz), 3.63-3.69 (m, 16H, 4x cH2OCH2), 3.98- 

4.03 (m, 4H, 2X OCH2CH2NH), 4.22 (t, 4H, NCHzCH2CHzN, J=5.8 Hz), 5.34 

(s, 2H, NCH2N), 7.33 (brs, 2H, 2X OCH2CH2NH); 5c: lH NMR(cDC13) 6=1.82 

(quint, 2H, NCH2CHzCHzN, J=5.7 Hz), 3.59-3.67 (m, 16H, 4x OCH~CHZO), 

3.73 (t, 4H, 2X OCH2CH2NH, J=4.9 Hz), 3.86-3.91 (m, 4H, 2X OCHICHZNH), 

4.01 (t, 4H, NCHzCHzCHzN, J=5.5 Hz), 5.66 (s, 2H, NCHzN), 7.34 (brs, 2H, 

2X OCHzCHzNH); 7: 'H NMR(CDC13) 6=1.85 (quint, 2H, NCH2CH2CH2N, J=5.8 

Hz), 2.71-2.81 {m, 8H, 2X SCHKHzS), 2.87 (t, 4H, 2x SCHzCHzNH, J=6.7 

Hz), 3.84-3.91 (m, 4H, 2X SCHZCH~NH), 4.02-4.13 (brs, 4H, NCHZCH~CH~N), 

5.65 (s, 2H, NCHzN), 7.35 (brs,ZH, 2X, SCHzCHZW). All FAS Spectra were 

measured by using NBA as a matrix. 5at m/z 363 (M+H+); 5b: m/z 407 

(M+H+); 5c: m/z 451 (M+H+); 7: m/z 411 (M+H+). 
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